Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.09.03.506499

ABSTRACT

Objectives: Close contact with patients with COVID-19 is speculated to be the most common cause of viral transmission, but the pathogenesis of COVID-19 by close contact remains to be elucidated. In addition, despite olfactory impairment being a unique complication of COVID-19, the impact of SARS-CoV-2 on the olfactory cell lineage has not been fully validated. This study aimed to elucidate close-contact viral transmission to the nose and lungs and to investigate the temporal damage in the olfactory receptor neuron (ORN) lineage caused by SARS-CoV-2. Methods: Syrian hamsters were orally administered SARS-CoV-2 as direct-infection models. On day 7 after inoculation, infected and uninfected hamsters were housed in the same cage for 30 minutes. These uninfected hamsters were subsequently assigned to a close-contact group. First, viral presence in the nose and lungs was verified in the infection and close-contact groups at several time points. Next, the impacts on the olfactory epithelium, including olfactory progenitors, immature ORNs, and mature ORNs, were examined histologically. Then, the viral transmission status and chronological changes in tissue damage were compared between the direct-infection and close-contact groups. Results: In the close-contact group, viral presence could not be detected in both the nose and lungs on day 3, and the virus was identified in both tissues on day 7. In the direct-infection group, the viral load was highest in the nose and lungs on day 3, decreased on day 7, and was no longer detectable on day 14. Histologically, in the direct-infection group, mature ORNs were most depleted on day 3 (p < 0.001) and showed a recovery trend on day 14, with similar trends for olfactory progenitors and immature ORNs. In the close-contact group, there was no obvious tissue damage on day 3, but on day 7, the number of all ORN lineage cells significantly decreased (p < 0.001). Conclusion: SARS-CoV-2 was transmitted even after brief contact and subsequent olfactory epithelium and lung damage occurred more than 3 days after the trigger of infection. The present study also indicated that SARS-CoV-2 damages all ORN lineage cells, but this damage can begin to recover approximately 14 days post infection.


Subject(s)
COVID-19 , Lung Diseases , Cognition Disorders
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.08.27.504955

ABSTRACT

mRNA vaccines against the Spike glycoprotein of severe acute respiratory syndrome type 2 coronavirus (SARS-CoV-2) elicit strong T-cell responses. However, it is unknown whether T cell clones induced by the first vaccination or newly generated T cell clones dominate responses to the secondary vaccination. Here, we analyzed the kinetic profile of Spike-reactive T-cell clones before the first dose, one week after the first and second dose, and four weeks after the second dose of the BNT162b mRNA vaccine. Interestingly, a new set of Spike-reactive CD8+ T cell clones exhibited the greatest expansion following secondary vaccination and replaced the clones that had responded to the primary vaccination. Single-cell mRNA/protein/TCR analysis revealed that the first-responder clones exhibited a terminally differentiated phenotype, whereas second-responder clones exhibited an actively proliferating phenotype. These results show that Spike-reactive T cell responses induced by repetitive mRNA vaccination are augmented and maintained by replacement with newly-generated clones with proliferative potential.


Subject(s)
Coronavirus Infections
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.28.21268435

ABSTRACT

Since February 2021, health care workers in Japan have been preferentially vaccinated with a messenger RNA vaccine (BNT162b2/Pfizer) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While many studies have confirmed that this vaccine is highly effective in reducing hospitalizations and deaths from coronavirus disease 2019 (COVID-19), antibody titers tend to decline at 3 months, leading to a risk of breakthrough infections. Thus, information is needed to support decision making regarding the third vaccination. In this study, we investigated transition of the anti-SARS-CoV-2 receptor-binding domain (RBD) IgG and neutralizing antibody titers of 41 vaccinated Japanese healthcare workers. Samples were collected seven times starting 1 week before vaccination until 6 months post-vaccination. Anti-SARS-CoV-2 RBD IgG levels peaked at 7 days after the booster, then declined over time and decreased to <10% at 6 months after the booster. Workers with low anti-SARS-CoV-2 RBD IgG levels also had low neutralizing antibody titers. These data support the active use of boosters for healthcare workers, especially for those with low anti-SARS-CoV-2 RBD IgG levels.


Subject(s)
Coronavirus Infections , COVID-19
5.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1204399.v1

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections can cause long-lasting anosmia, but the impact of SARS-CoV-2 infection, which can spread to the nasal cavity via the oral route, on the olfactory receptor neuron (ORN) lineage and olfactory bulb (OB) remains undetermined. Using Syrian hamsters, we explored whether oral SARS-CoV-2 inoculation can lead to nasal viral infection, examined how SARS-CoV-2 affects the ORN lineage by site, and investigated whether SARS-CoV-2 infection can spread to the OB and induce inflammation. On post-inoculation day 7, SARS-CoV-2 presence was confirmed in the lateral area (OCAM-positive) but not the nasal septum of NQO1-positive and OCAM-positive areas. The virus was observed partially infiltrating the olfactory epithelium, and ORN progenitor cells, immature ORNs, and mature ORNs were fewer than in controls. The virus was found in the olfactory nerve bundles to the OB, suggesting the nasal cavity as a route for SARS-CoV-2 brain infection. We demonstrated that transoral SARS-CoV-2 infection can spread from the nasal cavity to the central nervous system and the possibility of central olfactory dysfunction due to SARS-CoV-2 infection. The virus was localized at the infection site and could damage all ORN-lineage cells. 


Subject(s)
COVID-19
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.15.097352

ABSTRACT

Background Anosmia is a frequent symptom in patients with the coronavirus disease 2019 (COVID-19) driven by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mostly recovers within weeks. This clinical figure is significantly different from that of anosmia after upper respiratory infection, which occurs in only a small proportion of patients and does not recover or requires months to recover. The background mechanisms of COVID-19 induced olfactory dysfunction have not been elucidated.Methods To address the unique pathophysiology of olfactory dysfunction associated with COVID-19, we examined the existence and distribution of ACE2 (virus binding receptor), TMPRSS2 and Furin (proteases to facilitate virus entry) in the nasal mucosa, composed of the respiratory mucosa (RM) and olfactory mucosa (OM), and the olfactory bulb (OB) in mouse and human tissues by immunohistochemistry and gene analyses.Results Ace2, Tmprss2, and Furin gene expressions were confirmed in the nasal mucosa and OB. ACE2 was widely expressed all in the RM, OM and OB. Co-expression of ACE2, TMPRSS2, and Furin was observed in the RM including the RE and subepithelial glands and in the OM, especially in the supporting cells on the olfactory epithelium and the Bowman’s glands. Notably, the olfactory receptor neurons (ORNs) in the OM were positive for ACE2 but almost negative for TMPRSS2 and Furin. The cells in the OB expressed ACE2 strongly and Furin weakly and did not express TMPRSS2.Conclusions ACE2 was widely expressed in the RM, OM and OB, but TMPRSS2 and Furin were expressed in certain types of cells and were absent in the ORNs. These findings, together with clinically reported ones, suggest that COVID-19 related anosmia can occur due to mainly sensorineural and central dysfunction and, to some extent, conductive olfactory dysfunction. That the ORNs express ACE2 but not TMPRSS2 or Furin may explain the early recovery of anosmia.Short Summary Protein expression patterns of ACE2, TMPRSS, and Furin suggest that COVID-19 related anosmia can occur due to mainly sensorineural dysfunction without olfactory neuronal damage.Competing Interest StatementThe authors have declared no competing interest.View Full Text


Subject(s)
Hearing Loss, Sensorineural , Olfaction Disorders , Respiratory Tract Infections , Nerve Degeneration , COVID-19 , Seizures
SELECTION OF CITATIONS
SEARCH DETAIL